Artificial neural networking and fuzzy logic exergy controlling model of combined heat and power system in thermal power plant
نویسنده
چکیده
This paper presents entropy generation minimisation model of combined heat and power system. The turbine control valves and heater throttle valves were analysed. The high-pressure control valves regulate the mass flow rate of steam into the turbine, whereas the intermediate-pressure and lowpressure control valves the steam pressure of the turbine extracts 3 and 5. The steam of the turbine extracts 3 and 5 is used for the city-wide heating system purposes by means of the peak and basic heaters. The quantity of the extracted steam used for the city-wide heating system is additionally controlled by the throttles regulating the extracted steam into the basic or peak heater. This results in a double throttling of the extracted steam of the turbine, double generated entropy and a double loss of work. If adequate pressure of the extracted steam of the turbines is maintained by means of the turbine control valves the two heaters for the heating system could operate with the throttles open. As a result, the generated entropy of the throttles of the steam admitted to the heater could be avoided and the amount of generated entropy of the turbine control valves reduced. © 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Modeling of a Geothermal Cycle Condenser in a Combined Diesel Power Cycle: Case Study of 42 MW Diesel Power Plant in Moghan and Ardabil
This paper presents the results of a research into the feasibility of recovering waste heat and determining design parameters of a recovery boiler for a set of medium-speed diesel generators with a capacity of 7 MW (the nominal capacity of all units is 42 MW, which would be a study on a unit). And is used to generate electricity. The main purpose of this study is to design a thermal waste recov...
متن کاملThermodynamic and Exergy Analysis of a Combined Power and Desalination Plant
Making potable water through desalination plants is a very important process in Iran where clean water is highly required. On the other hand, large amount of fossil fuel sources leads to the development of gas turbine power plants all over the country. Furthermore, Persian Gulf in the south and Caspian Sea in the north could be the main sources for supplying potable water in water scarcity area...
متن کاملOptimization and Exergy, Economic and Environmental Analysis of a Combine Cycle Power Plant
In this study, a combined cycle power plant with a nominal capacity of 500 MW, including two gas units and one steam unit, was considered by the mathematical model of thermodynamic modeling and the results of the modeling were controlled by the design information of the system. Then, the objective functions are optimized by considering the decision variables. In this multi-objective optimizatio...
متن کاملA Parametric Study on Exergy and Exergoeconomic Analysis of a Diesel Engine based Combined Heat and Power System
This paper presents exergy and exergoeconomic analysis and parametric study of a Diesel engine based Combined Heat and Power (CHP) system that produces 277 kW of electricity and 282 kW of heat. For this purpose, the CHP system is first thermodynamically analyzed through energy and exergy. Then cost balances and auxiliary equations are applied to subsystems. The exergoeconomic analysis is based ...
متن کاملEnergy and Exergo-Economic Assessments of Gas Turbine Based CHP Systems: A Case Study of SPGC Utility Plant
Combined heat and power systems are becoming more and more important, regarding their enhanced efficiency, energy saving, and environmental aspects. In the peresent study, three configurations of combined heat and power systems are intended as an alternative to separate production plant by considering environmental aspects. First and second laws of thermodynamics are adapted to the operatin...
متن کامل